Penentuan Kadar Flavonoid Total dan Pembentukan Model Klasifikasi Serbuk Daun Singkong (Manihot esculenta Crantz) Berbeda Ketinggian Tempat Tanam
DOI:
https://doi.org/10.19184/pk.v13i2.33581Keywords:
cassava, chemometric, flavonoid, NIR, UV-VisAbstract
Cassava is a plant in the Euphorbiaceae family and is commonly found in Indonesia. One of the main secondary metabolites of cassava leaves is flavonoids. The secondary metabolite content of a plant is affected by several factors, including the height of the planting site. This research was conducted to determine differences in flavonoid content and to form a classification model of cassava leaf powder based on the height of the planting site. The UV-Vis spectrophotometer colorimetric method was used to measure the flavonoid content of cassava leaf powder, which was then analyzed statistically. The formation of the classification model was carried out using NIR spectroscopy and Chemometrics. The total flavonoid content of the sample from the highlands, medium plains, and lowlands was 13.599, 12.212, and 10.912 mg QE/gram powder, respectively. The One-Way ANOVA test showed that there is a significant difference in the average total flavonoid content of cassava leaf powder. The post hoc test showed that the data for each altitude had a significant difference from the other. The formation of LDA, SVM, and SIMCA classification chemometric models has 100% accuracy and is validated with 100% accuracy, so the LDA, SVM, and SIMCA models could categorize all samples in the valid category. Therefore, the selected and validated chemometric models are LDA, SVM, and SIMCA models.
Downloads
References
[1] Menkes RI. Peraturan Menteri Kesehatan Republik Indonesia Nomor 6 Tahun 2016 Tentang Formularium Obat Herbal Asli Indonesia. In Indonnesia; 2016.
[2] Adiyasa MR, Meiyanti. Pemanfaatan Obat Tradisional di Indonesia: Distribusi dan Faktor Demografis yang Berpengaruh. J Biomedika dan Kesehat. 2021;4(3):130–8.
[3] Hasim, Falah S, Dewi LK. Effect of Boiled Cassava Leaves (Manihot esculenta Crantz) on Total Phenolic, Flavonoid and its Antioxidant Activity. Curr Biochem. 2016;3(3):116–27.
[4] KBM. Ensiklopedi Singkong : Deskripsi, Filosofi, Manfaat, Bududaya, dan Peluang Bisnisnya. Bantul: KBM Indonesia; 2020.
[5] Hanani E. Analisis Fitokimia. Jakarta: Buku Kedokteran EGC; 2015.
[6] Rukmana H. Usaha Tani Cabai Rawit. 1st ed. Yogyakarta: Kanisius; 2002.
[7] Tanamal MT, Papilaya PM, Smith A. Kandungan Senyawa Flavonoid pada Daun Melinjo (Gnetum gnemon L.) Berdasarkan Perbedaan Tempat Tumbuh. 2017;3:142–7.
[8] Fatchurrozak, Suranto, Sugiyanto. Pengaruh Ketinggian Tempat Terhadap Kandungan Vitamin C dan Zat Antioksidan pada Buah Carica pubescens di Dataran Tinggi Dieng. El-Vivo. 2013;1(1):24–31.
[9] Jamrógiewicz M. Application of the near-infrared spectroscopy in the pharmaceutical technology. J Pharm Biomed Anal. 2012;66:1–10.
[10] Ozaki Y. Near-Infrared Spectroscopy—Its Versatility in Analytical. Anal Chem. 2012;28(June):545–62.
[11] Rohman A. Statistika dan Kemometrika Dasar dalam Analisis Farmasi. 1st ed. Yogyakarta: Pustaka Pelajar; 2014.
[12] Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal. 2007;44(3 SPEC. ISS.):683–700.
[13] Depkes RI. Materia Medika Indonesia Jilid VI. Jakarta: Departemen Kesehatan Republik Indonesia; 1995.
[14] Chang C, Yang M, Wen H, Chern J. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J Food Drug Anal. 2002;10(3):178–82.
[15] Permadi A, Sutanto, Sri W. Perbandingan Metode Ekstraksi Bertingkat dan Tidak Bertingkat Terhadap Flavonoid Total Herba Ciplukan (Physalis angukata L.) Secara Kolorimetri. J Online Mhs Bid Farm. 2015;1(1):1–10.
[16] Rukmana KQ. Penetapan Kadar Flavonoid Total dan Penentuan Model Klasifikasi Serbuk Jahe Gajah (Z. officinale var. officinale) dari Daerah Ketinggian Berbeda dengan Metode Spektroskopi NIR-Kemometrik. Skripsi. Digital Repository Universitas Jember. Jember University; 2020. 1–76 p.
[17] Harmita. Petunjuk Pelaksanaan Validasi Metode dan Cara Perhitungannya. Maj Ilmu Kefarmasian. 2004;I(3):117–35.
[18] Soriano-disla JM, Janik LJ, Rossel RAV, Macdonald LM, Mclaughlin MJ. The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Taylor Fr Gr. 2014;37–41.
[19] Sholekah FF. Perbedaan Ketinggian Tempat Terhadap Kandungan Flavonoid Dan Beta Karoten Buah Karika (Carica pubescens) Daerah Dieng Wonosobo. Pros Semin Nas Pendidik Biol dan Biol. 2017;75–82.
[20] Rais IR. Isolasi dan Penentuan Kadar Flavonoid Ekstrak Etanolik Herba Sambiloto. Pharmaciana. 2015;5:100–6.
[21] Wulandari L, Idroes R, Rizky TR, Indrayanto G. Application of chemometrics using direct spectroscopic methods as a QC tool in pharmaceutical industry and their validation [Internet]. 1st ed. Profiles of Drug Substances, Excipients, and Related Methodology. Elsevier Inc.; 2021. 1–53 p.
[22] Berrar D. Cross-Validation. In: Encyclopedia of Bioinformatics and Computational Biology. Elsevier Inc.; 2018. p. 1–4.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nora Safira, Nia Kristiningrum, Lestyo Wulandari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
e-Journal Pustaka Kesehatan has CC-BY-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work. Authors who publish with this journal retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.